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Hypothesis Testing 

Often, we need to choose between competing views or hypotheses concerning a 

population parameter(s). We usu identify the status quo as the null hypothesis, 

H0, and the competing hypothesis, Ha, as the alternative hypothesis. Once we 

have our hypotheses, we collect and analyze sample data to determine whether it 

is “sufficiently” (we will be more precise on this notion soon!) consistent with the 

null hypothesis. If it is, we fail to reject the null hypothesis. Otherwise, we reject 

the null hypothesis. As we will see, the null hypothesis (like a criminal defendant 

assumed to be innocent until proven guilty in the US) requires lots of proof before 

it is rejected.  

Example 1: Does a New Drug Improve Cancer Survival Rates? 

Assume that the current drug used to cure pancreatic cancer results in a 10%, 5 

year survival rate. Let  p = fraction of pancreatic cancer patients taking a new drug 

that survive 5 years. Then our hypotheses are 

 

H0: p <=.10 Ha: p >.10. 

Therefore, the new drug is assumed to not be an improvement unless we receive 

strong evidence to support the view that the drug improves survival. 

To determine whether we should accept or reject or accept the null hypothesis 

we would take a sample of patients given the new drug and look at phat = fraction 

of patients in sample that survive at least 5 years. If phat<=.10 it is clear we 

should accept the null hypothesis, but what if phat = .12 or phat = .15? 

Note: In this example our alternative hypothesis specifies that the population 

parameter is greater than the values specified in the null hypothesis. Such an 

alternative hypothesis is called an upper one-sided alternative hypothesis. 
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Example 2: Is a congressional district poorer than average? 
The average US family income in 2015 was $79,263. You are interested in knowing whether your 

congressional district has a lower average income than the US overall. Define µ = average family 

income in your congressional district. Then, our hypotheses are: 

H0: µ = $79,263 or µ >=  $79,263; Ha: µ < $79,263. 

In this example, our alternative hypothesis specifies that the population parameter is smaller 

than the values specified in the null hypothesis. Such an alternative hypothesis is called a lower 

one-sided alternative hypothesis. 

Our null hypothesis is that our district is no t different than the rest of the US. 

We would now take a simple random sample of families in our district,  and calculate the sample 

mean ὼӶ. If ὼӶ = $80,000, should we fail to reject  the null hypothesis? Again, it may seem like we 

should, but weõre dealing with sample data, which contains error. Futher, if ὼӶ Αχυȟπππ ÏÒ ὼӶ

Αχςȟπππȟ  should we reject the null hypothesis or fail to reject it?  

Example 3: Do stock and bond annual returns have equal volatility? 
Often, we want to know if it is reasonable to assume that two populations have equal variance. 

When looking at annual investment returns, the standard deviation of annual percentage returns 

is referred to as volatility. In this situation, our hypotheses are: 

H0: Annual Variance Stock Returns = Annual Variance on Bond Returns. 

Ha: Annual Variance Stock Returns Î Annual Variance on Bond Returns. 

In this example, our alternative hypothesis does not specify a particular direction for the 

deviation of variances from equality. Therefore, the alternative hypothesis is called a two-sided 

alternative hypothesis. 

We could now look at, say, the last 10 years of annual returns on stocks and bonds. If the sample 

variance of the annual percentage returns on stocks and bonds are relatively close, we would fail 

to reject H0, but  if the sample variance of the annual percentage returns on stocks and bonds 

differ greatly, we would reject the null hypothesis. 

Should I Use a One-Tailed or Two-Tailed Test? 
Some statisticians believe you should always use a two-tailed test because a priori you have no 

idea of the direction in which deviations from the null hypothesis will occur. Most statisticians 

feel that if a deviation from the null hypothesis in either direction is of interest, then a  two-tailed 

alternative hypothesis should be used, while if a deviation from the null hypothesis is of interest 
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in only one direction, then a one-tailed alternative hypothesis should be used. It is much easier 

to reject the null hypothesis with a one -tailed test than it is with a two -tailed test. 

Types of Errors in Hypothesis Testing 
To determine whether to reject or fail to reject the null hypothesis, we look at a sample statistic. 

We determine a set of values for the sample statistic (called the critical region ) that result in the 

rejection of the null hypothesis.  There are two types of errors that can be made in hypothesis 

testing: 

Type I Error:  Reject H0 BUT H0 true. We let ŭ = probability of making a Type I Error. ŭ is often 

called the level of signifi cance of the test. 

Type II Error : Fail to reject H0 BUT H0 not true . We define Ȃ = Probability of making a Type II 

Error. 

In US criminal trials, the defendant is innocent until proven guilty. In this situation if we define 

H0: defendant innocent and Ha: defendant guilty, then a Type I error corresponds to convicting 

an innocent defendant while a Type II error corresponds to allowing a guilty person to go free. 

Since a 12-0 vote is needed for conviction, it is clear that the US judicial system considers a Type 

I Error to be costlier than a Type II Error. 

In a similar fashion, our approach to hypothesis testing will be to set a small probability ŭ 

(usually 0.05) of making a Type I Error, and then choose a critical region that minimizes the 

probability of making a Type II Error.  

Type I and Type II Error for Example 1 

In Example 1 a Type 1 error results when we reject p<=.10 when in reality p<=.10. 

This corresponds to the risk of concluding the new drug is an improvement when 

it is not.  

A Type 2 error results when we accept p<=.10 when actually, p>.10. This 

corresponds to the risk of concluding the new drug is not more effective when the 

drug is actually more effective than the old drug.  
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Using the One Sample Z Test to test Hypotheses about Population Mean 
when n>=30 or Population is Normal and σ is known 

If the sample size n is >=30, then according to the Central Limit Theorem, ὼӶ  will follow a n ormal 

random variable, even if the population is non -normal. In this situation, we will assume that the 

sample standard deviation , s, closely approximates the population standard deviation , Ű. Then, 

the following table summarizes the critical r egion  for upper one -tailed, lower one-tailed, and 

two-tailed hypotheses concerning µ. Because the critical regions are based on the standard 

normal, the tests are referred to as the One Sample Z Tests. 

Critic al Regions for One Sample Z -Test 

 

In the most common case where ŭ = 0.05, z.05 = -1.645 and z.025 = -1.96, and the previous 

formulas for the critical regions become: 

Hypotheses Critical Region 

H0: µ <=  µ0  

Ha: µ > µ0 

ὼӶ>=  µ0 + 1.645Ű/Ѝὲ 

H0: µ >=  µ0  

Ha: µ < µ0 

ὼӶ<=  µ0 - 1.645Ű/Ѝὲ 

H0: µ = µ0  

Ha: µ Î µ0 

ȿὼ  µ0| >= 1.96Ű/Ѝὲ 

 

 

Z-Test Example 
Passing the HISTEP test is required for graduation in the state of Fredonia. The average state 

score on the test is 75. A random sample of 49 students at Carver High School have ὼӶ χω and 

s = 15. For ŭ = 0.05, would you conclude that Cooley High Students perform differently than the 

typical state student? 

Hypotheses Critical Region 

H0: µ <=  µ0  

Ha: µ > µ0 

ὼ >=  µ0 + |zŭ|Ű/Ѝὲ 

H0: µ >=  µ0  

Ha: µ < µ0 

ὼӶ <=  µ0 + zŭŰ/Ѝὲ 

H0: µ = µ0  

Ha: µ Î µ0 

ȿὼ  µ0| >= |zŭ/2|Ű/Ѝὲ 
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There is no reason to believe that Cooley High is better or worse than the state, so we will use a 

two-tailed test: 

H0: µ = 75; Ha: µ Î 75. 

|79-75| >=  1.96*15/Ѝτω.  

|79-75| = 4.  

1.96*15/Ѝτω = 4.2.  

In other words, to be significant at ŭ = 0.05, the difference must be greater than 4.2. It is not; 

thus we fail to reject the null hypothesis, and conclude that the average Cooley High School 

score does not differ from the state average. 

Now, suppose we have invested resources to improve test scores at Cooley High School. Then, 

we might be interested in seeing if Cooley High School students performed better than the 

state. In this case, we would want to conduct an upper one-sided alternative hypothesis test: 

H0: µ = 75; Ha: µ > 75. 

79 >=  75 + (1.645*15)/Ѝτω = 78.525 

In other words, to be significant at ŭ = 0.05, the result of the right part of the equation must be 

less than or equal to 79.  In this case, we reject the null hypothesis, and conclude that our efforts 

have resulted in significant improvement. 

The astute reader should realize that for a .05 level of significance our data resulted in rejection 

of Ho for a one-tailed test and failure to reject the  Ho for a two-tailed test. This example 

illustrates that for the same level of significance can result in different outcomes based on the 

type of hypothesis test being evaluated. This is why many statisticians always recommend a two-

tailed alternative, because you have made a stronger case for rejecting H0. 

Probability Values (P-Values) and Hypothesis Testing 
The level of significance chosen is rather arbitrary. For that reason, most statisticians use the 

concept of probability values (p-values) to report the outcome of a hypothesis test. The p-value 

for a hypothesis test is the smallest value of ŭ for which the data indicates rejection of H0. Thus, 

to reject the null hypothesis the p-value must be <=  ŭ. If it is > ŭ, we fail to reject the H0. 

The p-value may also be interpreted as the probability of observing a value of the test statistic at 

least as extreme as the observed value of the test statistic if H0 is true. In other words, itõs the 

probability of incorrectly rejecting the null hypothesis.  

If we let ╧  represent the random variable for the sample mean under H0 and x be the observed 

value of ὼӶ, then the p-value for the one sample Z-test is computed as follows: 
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P-Values for One Sample Z -Test 

 

 

 

 

All probabilities are computed under the assumption that H 0 is true.  

In our Cooley High School example, the p-value for the two -tailed test is: 

2*Prob(ȿ╧-75|>=4) = 2*Prob(╧>=79) ,  

which can be computed as the following in Excel: 

2*(1-NORM.DIST(79,75,15/Ѝτω), True) = 2*(0.030974) = 0.061948. 

Because our p-value of 0.06 > our alpha value of .05, we fail to reject  H0.  

The p-value for a one-tailed test is: 

Prob(╧>=79) = 0.030974.  

Because our p-value of 0.03 < than our alpha value of .05, we reject H0. 

One Sample Hypothesis for Mean: Small Sample, Normal Population, 

Variance Unknown 
Suppose we are interested in testing a hypothesis about the mean of a normal population where 

the population variance is unknown, and the sample size n is <30. Then, it can be shown that 

(ὼӶ - ʈ)/(s/än) follows a t-distribution with n -1 degrees of freedom. Here s = sample standard 

deviation. 

Like the standard normal distribution, the t -distribution has a density symmetric around 0. As 

shown below, the t-distribution has fatter tails than the standard normal density, and as n 

increases the t-distribution approaches the standard no rmal density. 

Hypotheses P-Value 

H0: µ <=  µ0  

Ha: µ > µ0 

Prob(╧ >=  x) 

H0: µ >=  µ0  

Ha: µ < µ0 

Prob(╧ <=  x) 

H0: µ = µ0  

Ha: µ Î µ0 

Prob(ȿ╧ ʈȿ ὼ) 
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As shown in the Hypothesis Testing.xlsx  spreadsheet, T random variable worksheet shows the 

percentiles of the t-distribution and how they can be computed using the T.INV function. We let 

t(ŭ,n-1) represent the ŭ percentile of a t-distribution with n -1 degrees of freedom. Below we find, 

for example, t(.025,28) = -2.04841. 

 

Basically, one sample t-tests look just like one sample z-tests with s replacing Ű and the t 

percentiles replacing the z percentiles. 

Critical Region for One Sample t-tests 

 

 

If we let Tn-1 stand for a t-distribution with n -1 df and t represent the observed value of (ὼӶ - 

ʈ)/(s/än), then the p-values for a one sample t-test may be computed as follows: 
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2.5 %ile 28 df -2.04841 =T.INV(0.025,28)

97.5%ile 28 df 2.048407 =T.INV(0.975,28)

0.5% ile 13 df -3.01228 =T.INV(0.005,13)

99.5%ile 13 df 3.012276 =T.INV(0.995,13)

Hypotheses Critical Region 

H0: µ <=  µ0  

Ha: µ > µ0 

ὼӶ>=  µ0 + |t(ŭ,n-1)|s/Ѝὲ 

H0: µ >=  µ0  

Ha: µ < µ0 

ὼӶ<=  µ0 + t(ŭ,n-1)s/Ѝὲ 

H0: µ = µ0  

Ha: µ Î µ0 

ȿὼ  µ0| >=  | t(ŭ/2,n-1|s/Ѝὲ 
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P-Values for One Sample t-Test 

 

 

 

 

As shown below, in a fashion similar to the NORM.DIST function, the T.DIST function in Excel can 

be used to compute probabilities for the t -distribution.  

 

Example 5 
Passing the HISTEP test is required for graduation in the state of Fredonia. The average state 

score on the test is 75. A random sample of 25 students at Carver High School has ὼӶ ψρ and s 

= 15. For ŭ= 0.05, would you conclude that Cooley High School students perform differently 

than the typical state student? 

We use a two-tailed test because we have no a priori view about whether Cooley High School 

students will perform better or worse than the typical state student.   

H0: µ= 75, Ha: ʈ χυȢ 

Using the function T.INV(0.025,24) We find t (..025,24) = -2.06. 

We reject H0 if |81-75| >=  2.06*15/Ѝςυ = 6.18.  

Because 6 is not >= 6.18, we fail to reject  H0.  

 

The p-value for this test is 2*Prob(T24 >= (81 -75)/(15/Ѝςυ)  

= 2*Prob(T14 >=  2). 

Prob(T14 >=  2) may be computed with the formula =  1-T.DIST(2,14,TRUE) in Excel, which returns 

0.033. Therefore, the p-value for this test is 2*0.033 = 0.066. Because .066 is > 0.05, we fail to 

reject H0.  

12

13

D E F

Prob T10>=2 0.036694 =1-T.DIST(2,10,TRUE)

Prob T10<=-2 0.036694 =T.DIST(-2,10,TRUE)

Hypotheses P-Value 

H0: µ <=  µ0  

Ha: µ > µ0 

Prob(Tn-1 >=  t) 

H0: µ >=  µ0  

Ha: µ < µ0 

Prob(Tn-1 <=  t) 

H0: µ = µ0  

Ha: µ Î µ0 

2*Prob(Tn-1 >=|t|)  
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Single Sample Test about Population Proportion 
Often a population proport ion is unknown. The òOne Sample Proportionó worksheet in 

Hypothesis Testing.xlsx  spreadsheet uses the BINOM.DIST.RANGE function to calculate the p-

value for both one -tailed and two -tailed alternative hypotheses. 

 

To use this worksheet, simply enter the number of trials in cell B3, the number of successes in 

B4, and in cell B5 enter the value of the population proportion (p0) assumed in the null 

hypothesis. Then, the p-value for a right -tailed test can be found in cell E6, the p-value for a left-

tailed test can be found in cell E12, and the p-value for a two-tailed test can be found in cell E17. 

Example 6 
An NBA player has made 70% of his foul shots in the past. The owner has hired a free throw 

coach to improve his free throw shooting. So far this year, the player has shot 400 free throws 

and made 300. At the .05 level of significance, can you conclude that the coach has succeeded in 

improving the playerõs free throw shooting? 

Because we are only interested in improvement we use an upper one-sided test. 

H0: p = 0.70; Ha: p > .0.70. Here p = the probability that the  player makes a free throw. 

If we enter these values into the òOne Sample Proportionó worksheet, we see the p-value is 

0.016, which is <=  0.05, so we reject the null hypothesis and conclude the coach has improved 
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Testing a Proportion Player makes 300 of 400 Free Throws?

Has she improved from being a 70% foul shooter?

trials 400 Ho: p<=p0

successes 300 Ha: p>p0 H0:  p<=0.70 Ha: P>0.70

Pzero 0.7

Righttailedpvalue 0.0155 =BINOM.DIST.RANGE(trials,Pzero,successes,trials)

Ho: p>=p0

Ha: p<p0

Lefttailedpvalue 0.9884 =BINOM.DIST.RANGE(trials,Pzero,0,successes)

Ho: p=p0

Ha: p≠p0

Twotailedpvalue 0.0311 =2*MIN(Lefttailedpvalue,Righttailedpvalue)

Reject H0 if pvalue<=α
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the playerõs free throw shooting. In this situation, the p-value is simply the probability  of a result 

as extreme as making 300 of 400 free throws, or the probability that a 70% free throw shooter 

will make >=  300 free throws in 400 attempts. 

Testing Hypotheses about Equality of Variances 
Often, we want to test if two populations have identical variances. The òT Test Equal Varianceó 

worksheet in the Hypothesis Testing.xlsx spreadsheet contains a template to test for ŭ= 0.05 

equality of variance between two populations. The test assumes the two populations are normal 

random variables. 

Simply enter the sample size and sample variance for the two populations in D3:D6. D11 and 

D12 give a 95% confidence interval for the ratio of the population variances.  

If the 95% confidence interval contains 1, you fail to reject  the null hypothesis that the 

populations have equal variances; if the 95% confidence interval does not contain 1 reject the 

hypothesis of equal variances.  

In this worksheet, we have the grades on the final exam of 14 statistics students who took a 

hybrid statistics class (mostly online) and the final exam grades of 18 students who took the 

same final exam but took the course in person with the same instructor as the hybrid group. In 

D3:D6, we entered the sample size and sample variance for each population. We are 95% sure 

that the ratio of the population variances is between 0.68 and 5.66. Since this interval includes 1, 

we conclude the variance of the scores for the two classes are identical. 
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13

14

A B C D

TESTING IF VARIANCES OF TWO POPULATIONS ARE EQUAL

SAMPLEVAR1 33.91758242

SAMPLESIZE1 14

SAMPLEVAR2 18.01633987

SAMPLESIZE2 18

SVAR1OVERSVAR2 1.882601164

LOWERCI 0.358900271

UPPERCI 3.003895725

LOWERLIMIT 0.675666068

UPPERLIMIT 5.65513759

Variances Equal
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Testing the Difference Between Two Population Means 
There are four important hypothesis tests that can be used to evaluate the difference in two 

population  means. Within Excel, the òData Analysis Add-Inó makes ii simple to perform each of 

these tests: 
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Situation  Name of Test 

Large sample size (n >=  30) from each 

population and samples are independent 

z-Test Two Sample for Means 

Small sample size (n < 30) for at least one 

population , populations  are normal, variances 

unknown but equal, and the samples are 

independent  

t-Test Two Sample Assuming Equal Variances 

Small sample size (n < 30) for at least one 

population, populations  are normal, variances 

unknown but unequal, and the samples are 

independent  

t-Test Two Sample Assuming Unequal 

Variances 

The two populations are normal and the 

observations from the two populations can 

be paired in a natural fashion 

t-Test Paired Two Sample for Means 

z-test Two Samples for Means 
Suppose we have a large sample size of at least 30 from two populations , and the samples from 

the two populations are independent (that is, the values in the sample from the first population 

have no effect on the values in the sample from the second population). Let µi = unknown mean 

for population i. Then, the z-Test Two Sample for Means test from the Data Analysis Add-In can 

be used to test: 

H0: µ1 = µ2 against a one tailed or two-tailed alternative.  

For example, in the òTwo Sample Z testó worksheet of the Hypothesis  Testing .xlsx  workbook , 

we are given the starting salaries (in thousands of dollars) for 227 marketing and 211 finance 

graduates of a leading MBA program. We want to conduct a two -tailed test to determine if the 

average starting salaries for marketing and finance majors are equal.  
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After selecting the Data Analysis Add-in from the Data ribbon, we select the òz-Test Two 

Samples for Means.ó We assume ŭ = 0.05. After computing the sample variance (with the VAR 

function) for each population (in cells D2 and E2) fill in the dialog box as shown below : 
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24

25

B C D E F G H I J K

variance 131.6628591 144.021

Marketing Finance

118 105

110 90

106 101 z-Test: Two Sample for Means

94 130

91 124 Marketing Finance

102 104 Mean 98.64758 109.1896

96 129 Known Variance 131.66 144.02

116 110 Observations 227 211

106 110 Hypothesized Mean Difference 0

117 126 z -9.38203

90 116 P(Z<=z) one-tail 0

113 97 z Critical one-tail 1.644854

112 123 P(Z<=z) two-tail 0

109 124 z Critical two-tail 1.959964

106 115

114 100 H0: Mean Marketing=Mean Finance

92 130 Ha: Mean Marketing ≠Mean Finance

99 93

105 97 P-Value =0 so reject null hypothesis

81 93 and conclude significant difference

82 110 between Average salary of marketing and finance majors
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We find a p-value of 0, so for any alpha, we would reject the hypothesis that average salaries for 

marketing and finance majors are equal. Clearly, finance majors have significantly larger salaries. 

t-Test Two Sample Assuming Equal Variances 
Suppose we want to compare the means of two normal populations which have unknown but 

equal variances. If we take samples from the two populations that are independent and at least 

one of the sample sizes is <30, then we can use the t-Test Two Sample Assuming Equal 

Variances to compare the population means. First, of course, we should test the hypothesis that 

the two populations have Equal Variances. 

In the òTest Equal Varianceó worksheet of Hypothesis  Testing .xlsx  workbook, we are given the 

final exam grades for 14 students who took statistics in a hybrid (mostly online) format and final 

exam grades of 18 students who took the course in a traditional classroom format. Does 

performance of the students in the tw o classes differ significantly? Our hypotheses are:  

H0: µHybrid = µInclass; Ha: µHybrid Î µInclass 

Our test requires both populations be normal. A quick eyeball test for normality is to compute 

the skewness and kurtosis of a sample. If both the skewness (computed with SKEW function) and 

kurtosis (computed with KURT function) of a sample are between -1 and +1 the assumption of 

normality is almost surely justified. From cells F2:G3 the assumption of normal populations 

appears reasonable. 
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In cells B3 and B5, we use the VAR function to determine the sample variance for each data set. 

After entering the sample sizes in B4 and B6, we find from D11 and D12 that we are 95% sure 

the ratio of the population variances is between .68 and 5.65. This interval includes one, so the 

assumption of equal variances is justified. Then, from the Data ribbon, we choose Data Analysis 

and select the òt-Test Two Sample Assuming Equal Variancesó and fill in the dialog box as 

follows: 
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20
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22

23

24

A B C D E F G

TESTING IF VARIANCES OF TWO POPULATIONS ARE EQUAL

SKEW -0.50544 0.144793

SAMPLEVAR1 33.91758242 KURT 0.103766 -0.61404

SAMPLESIZE1 14 Hybrid In Person

SAMPLEVAR2 18.01633987 87 88

SAMPLESIZE2 18 94 96

SVAR1OVERSVAR2 1.882601164 86 84

LOWERCI 0.358900271 89 82

UPPERCI 3.003895725 74 81

84 85

LOWERLIMIT 0.675666068 85 90

UPPERLIMIT 5.65513759 85 90

92 89

Variances Equal 90 95

77 88

Test H0: MeanHybrid=Mean In Person 82 89

Test Ha: MeanHybrid≠Mean In Person 94 93

84 85

Test H0: VarianceHybrid=Variance In Person 87

Test Ha: VarianceHybrid≠Variance In Person 83

Accept H0 88

84

Now test mean difference using equal variance t test

t-Test: Two-Sample Assuming Equal Variances
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The results of the hypothesis test are: 

 

The p-value for a two-tailed test is .35. Because 0.35 >=  .0.05, we fail to reject  the null 

hypothesis that the mean performance of students is equivalent regardless of class delivery. 

t-Test Two Sample Assuming Unequal Variances 
Suppose we want to compare the means of two normal populations which have unknown but 

unequal variances. If we take samples from the two populations that are independent and at 

least one of the sample sizes is < 30, then we might need to  use the t-Test Two Sample 

24
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35

36

37

D E F G

t-Test: Two-Sample Assuming Equal Variances

Hybrid In Person

Mean 85.92857 87.61111

Variance 33.91758 18.01634

Observations 14 18

Pooled Variance 24.90688

Hypothesized Mean Difference0

df 30

t Stat -0.94609

P(T<=t) one-tail 0.175831

t Critical one-tail 1.697261

P(T<=t) two-tail 0.351663

t Critical two-tail 2.042272
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Assuming Unequal Variances to compare the population means. First, of course, we should test 

the hypothesis that the two populations have unequal v ariances. 

In the òT Test Unequal Varianceó worksheet of Hypothesis Testing.xlsx spreadsheet, we illustrate 

how to use the t-Test Two Sample Assuming Equal Variances analysis in Excel. 

 

You are conducting a study to determine if a new anti-cholesterol drug is more effective than 

the placebo in reducing cholesterol. Fourteen patients were given a placebo, and eighteen 

patients were given a new anti-cholesterol drug. Your data indicates the change (reduction) in 

cholesterol for each patient from month 1 to month 2 . We are trying to determine if the mean 

change cholesterol for the patients receiving the drug is bigger than that of those  receiving the 

placebo.  

First, we confirm the assumption of normality using SKEW and KURT functions. As you can see 

by the results in F2:G3, the assumption of normal populations appears reasonable. 
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TESTING IF VARIANCES OF TWO POPULATIONS ARE EQUAL

SKEW -0.5968 0.484351

SAMPLEVAR1 11.0289756 KURT -0.21044 -0.22528

SAMPLESIZE1 14 Placebo Drug

SAMPLEVAR2 1.119337276 2.907128 10.41907

SAMPLESIZE2 18 4.40015 7.99349

SVAR1OVERSVAR2 9.853129914 5.492934 8.61935

LOWERCI 0.358900271 4.55906 9.152468

UPPERCI 3.003895725 7.550103 8.599242

-2.77164 8.922706

LOWERLIMIT 3.536290994 -3.85383 9.382386

UPPERLIMIT 29.59777483 1.075804 9.259688

3.053792 9.446886

Variances Not Equal 3.256407 10.71418

2.996793 11.12724

Test H0: MeanPlacebo=Mean Drug -2.98564 9.476701

Test Ha: MeanPlacebo<MeanDrug 1.396865 9.680459

2.843022 8.138261

Test H0: VariancePlacebo=VarianceDrug 10.3785

Test Ha: VariancePlacebo≠VarianceDrug 8.954938

Reject H0 11.99119

10.30647

Now test mean difference using Unequal variance t test
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Next, we determine if the variances are equal. In cells D3 and D5, we compute the sample 

variances with the VAR function, and in cells D4 and D6, we note the sample sizes. From cells 

D11 and D12, we are 95% sure the ratio of the population variances is between 3.54 and 29.56. 

This interval does not include one, so we conclude the population variances are unequal.  

To test H0: µPlacebo=µDrug and Ha: µDrug>µPlacebo, we select Data Analysis from the Data ribbon, and 

choose òt-Test Two Sample Assuming Unequal Variances.ó Then, we fill in the dialog box as 

shown below: 

 

The results of the hypothesis test are: 

 

26

27

28

29

30

31

32

33

34

35

36

37

38

D E F G

t-Test: Two-Sample Assuming Unequal Variances

Placebo Drug

Mean 2.137211 9.586846

Variance 11.02898 1.119337

Observations 14 18

Hypothesized Mean Difference0

df 15

t Stat -8.08041

P(T<=t) one-tail 3.81E-07

t Critical one-tail 1.75305

P(T<=t) two-tail 7.61E-07

t Critical two-tail 2.13145
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The p-value for a one tailed test is 4 in 10 million, a number that is much less than 0.05, so we 

reject the null hypothesis that the placebo and drug are equally effective at reducing cholesterol, 

and conclude that the  new drug is more effective than the placebo at reducing cholesterol.  

t-Test Paired Two Sample for Means 
Often observations from two populations can be paired in a meaningful way. In such situations, 

the t-Test Paired Two Sample for Means (often called Matched Pairs) can be used. Both 

populations need to be normal random variables. For example: 

Goal Design 

To test if a drug reduces cholesterol Pick ten pairs of two people who are matched 

on age, weight and cholesterol. We flip a coin 

to randomly choose which member of each 

pair receives the drug and which receives the 

placebo. 

To test if a new type of insulation reduces 

heating bills 

Pick ten pairs of two houses that had the 

same heating bill last winter. Flip a coin to 

choose house gets the new type of insulation ; 

the other retains its old insulation. 

To test if cross training (not just swimming) 

improves a swimmerõs time 

Pick 15 pairs of swimmers who had identical 

best times in their event. Flip a coin to 

determine which in the pair starts cross 

training. 

 

In each of these situations, we are blocking the effect of a variable on the response and 

focusing on the difference between the treatment variable. Blocking the effect of non -

treatment variables makes it easier to isolate the effect of the treatment variable . 

Blocking Variable Treatment Variable 

Physical characteristics of patients Difference between drug and placebo 

Size and design of home Difference between new and old insulation 

Swimmerõs ability Difference between cross training and just in 

water training 

 

In the òMatched Pairsó worksheet, we use the t-Test Paired Two Sample for Means to determine 

whether a new type of insulation reduces heating bills. 
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The homes in each row had identical winter heating bill s in 2016. Before the winter of 2017, a 

coin is flipped for each pair of homes. If the coin is heads the first home in the pair is given a 

new type of insulation  while the other home keeps its old insulation. If the coin is tails the first 

home keeps its current insulation , and the second home gets the new insulation. This 

randomization blocks out random differences in homes and allows us to be more confident that 

any differences in heating bills that we observe are based on the type of insulation in the home  

rather than something else.  

The numerical data in rows 6-15 of this worksheet indicate the change in the monthly winter 

heating bill during the 2017 winter. For example, the first home given new insulation saw their 

heating bill increase by an average of $23 per month, and the first home that kept their current 

insulation saw a $34 per month reduction in their heating bill insulation . We wish to test Ho: µNew 

= µOld against Ha: µNew < µOld. 

Here µNew = mean reduction in monthly winter 2017 heating bill for home s with new insulation 

and µold = mean reduction in monthly winter 2017 heating bill for home s with old insulation.  

As with the previous tests, the first step is to check of the skewness and kurtosis for each sample 

to ensure they are consistent with normality. Based on the values in H3:I4, we can be confident 

that the normality assumption is not violated.  
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To do this analysis, from the Data ribbon, we select Data Analysis, choose òt-Test Paired Two 

Sample for Meansó and fill in the dialog box as shown below: 

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

G H I

skewness 0.43421808 -0.197214711

kurtosis -0.057517024 -2.107287845

Observation Old Insulation New Insulation

1 -34 23

2 6 16

3 31 -28

4 10 29

5 -2 30

6 -12 -72

7 49 -46

8 -15 -55

9 -45 21

10 -17 -61

t-Test: Paired Two Sample for Means

Old Insulation New Insulation

Mean -2.9 -14.3

Variance 806.3222222 1750.233333

Observations 10 10

Pearson Correlation -0.206862333

Hypothesized Mean Difference 0

df 9

t Stat 0.652971466

P(T<=t) one-tail 0.265049676

t Critical one-tail 1.833112933

P(T<=t) two-tail 0.530099352

t Critical two-tail 2.262157163
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We obtain a p-value for a one-tailed test of 0.265, so for ŭ= 0.05, we would fail to reject  H0, and 

conclude the new insulation is ineffective. 

Chi Square Test for Independence 
The Chi-Square test for Independence is used to determine if there is a significant relationship 

between two categorical variables. For example, the distribution of eye color by gender in an 

Iowa State statistics class is summarized in the following contingenc y table:   

  Eye Color 

Gender Blue Brown Green Hazel 

Female 370 352 198 187 

Male 359 290 110 169 

Total 729 642 308 356 

The question is whether eye color is independent of or dependent on gender. As shown in the 

òChi-Squareó worksheet, we find the percentage of eye color by gender  is: 
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If eye color was completely independent of gender, then eye color would not depend on 

gender, and we would find  that: 

¶ 35.82% of each gender with blue eyes. 

¶ 31.55% of each gender with brown eyes 

¶ 15.14% of each gender with green eyes. 

¶ 17.49% of each gender with hazel eyes. 

(These percentages are the marginal probabilities for each eye color in the table.) 

Are the observed discrepancies from the expected percentages simply occurring by chance? If 

so, gender and eye color are independent. In this situation, our hypotheses are: 

H0: Gender and Eye Color are Independent  

Ha: Eye Color depends on Gender 

If a contingency table has R rows and C columns, then the relevant test statistic follows a ȑ2 

random variable with (R-1) * (C-1) degrees of freedom. In this example, R = 2 and C = 4, giving 

us 3 degrees of freedom.  

To compute the relevant test statistic , r, we define: 

¶ N = Total number of observations  

¶ Oij = Observed number of observations in row i and column j of the contingency table. 

¶ Eij =N * (proportion of observations in r ow i)*(proportion of observations in column j); or 

the row marginal probability multiplied by the column marginal probability multiplied by 

the total number of observations. Eij is simply the expected number of observations in 

the row i column j cell if the row and column categories are independent.  

Then, for each cell, compute (Oij ð Eij)
2
/Eij. In other words, observed value ð expected value 

squared divided by the expected value. 

Summing up this quantity for each cell yields the ȑ2 statistic. If there is perfect independence 

between the row and column categories, then for each cell Eij =O ij, (the number of expected 

11

12

13

14

15

K L M N O P

Eye Color

Gender Blue Brown Green Hazel Total

Female 33.42% 31.80% 17.89% 16.89% 100.00%

Male 38.69% 31.25% 11.85% 18.21% 100.00%

Total 35.82% 31.55% 15.14% 17.49% 100.00%
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observations equals the number observed), and the observed ȑ2
 statistic would equal 0. 

Therefore, a large ȑ2
 statistic would result in rejection of the null hypothesis.  

If the level of significance is ŭ, then we reject the null hypothesis when the test statistic is >= the 

(1-ŭ) %ile of the Chi Square random variable with the appropriate degrees of freedom. This 

value for the Chi-Square test can be found using the CHISQ.INV(1-ŭ,degrees of freedom) 

function  in Excell. The cutoffs for 1,2,3, and 4 degrees of freedom for ŭ=0.05 are as follows: 

 

In our example, we have R = 2 and C = 4, so we have (2-1)*(4-1) = 3 degrees of freedom and the 

cutoff point for rejecting the null hypothesis of independence for ŭ= 0.05 is 7.81. 

The total number of observations (2035) is computed in cell I17.  

To calculate the Chi Square, you must first calculate the expected values. Obtain these values, Eij, 

by copying the formula  from L19 to L19:O22. The formula in L19 = ($P7/Total)*(L$9/Total)*Total, 

which is the observed marginal value for the associated row divided by the total multiplied by 

the marginal value for the associated column divided by the total; this product is then multiplied 

by the total . For example, the expected value for females with blue eyes is calculated like this: 

Expected Number of Greened Eyed Females = (1107/2035)*(729*2035)*2035 = 396.56. 

Note the row and column totals  (L21:O21 and P19:P20) of each Eij match the observed data. 
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15

16

17

18

19

D E F

df Cutoff

1 3.841459 =CHISQ.INV(0.95,D16)

2 5.991465 =CHISQ.INV(0.95,D17)

3 7.814728 =CHISQ.INV(0.95,D18)

4 9.487729 =CHISQ.INV(0.95,D19)

17

18

19

20

21

K L M N O P

Eye Color

Gender Blue Brown Green Hazel Total

Female 396.56 349.24 167.55 193.66 1107.00

Male 332.44 292.76 140.45 162.34 928.00

Total 729.00 642.00 308.00 356.00
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Copying the formula  ((L7-L19)^2/L19) from L25 to L25:O26 computes (Oij ð Eij)
2
/Eij for each cell. 

 

Summing those values, the Chi Square statistic is 16.59 which is >= cutoff of 7.81 , so we reject 

the hypothesis that eye color and gender are independent. We can find the p-value for the test 

using the CHISQ.DIST.RT(test statistic value, degrees of freedom) in cell H29. RT in this formula 

stands for òright tailed probability ó which is the probability that we evaluate in Chi Square 

analysis. 

 

In this case, the p-value of 0.000858 is <= 0.05, which is consistent with our rejection of H0. 
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26

27

28

H I J K L M N O

Test Statistic

Eye Color

Gender Blue Brown Green Hazel

Female 1.78 0.02 5.54 0.23

Male 2.12 0.03 6.60 0.27
Chi Square Total

16.59

29

30

H I J K

0.000858 =CHISQ.DIST.RT(H28,3)


